Homework 8

Due: Thursday, December 7, 2023, 1:00 pm on Gradescope

Please upload your answers timely to Gradescope. Start a new page for every problem. For the programming/simulation questions you can use any reasonable programming language. Comment your source code and include the code and a brief overall explanation with your answers.

1. (10 pts) Consider the *n*-dimensional multi-sensor estimation problem:

$$\mathbf{Y} = \mathbf{h}X + \mathbf{W}, \qquad X \sim \mathcal{N}(0, \sigma_x^2), W \sim \mathcal{N}(0, \sigma_w^2 \mathbf{I}),$$

and X and W are independent.

- a) (3 pts) Derive the MMSE estimator of X given Y using the general formula you derived for Q. 1 in HW 7 Is the relevant matrix invertible? Comment on the computational effort of directly implementing this estimator for n large.
- b) (3 pts) Derive an estimator of X by first projecting Y along h to obtain V and then compute the MMSE estimate of X given V. Comment on the computational effort of implementing this estimator for n large.
- c) (4 pts) Show that the estimators in (a) and (b) are identical. (Hint: let \mathbf{g}^T be the row vector $K_{XY}K_Y^{-1}$ and multiply it by K_Y to solve for \mathbf{g} .)
- 2. (10 pts) Consider the dynamical system discussed in class

$$X_0 \sim \mathcal{N}(0, \sigma_0^2)$$

 $X_n = \alpha X_{n-1} + W_{n-1} \quad n = 1, 2, \dots$
 $Y_n = X_n + Z_n, \quad n = 0, 1, 2 \dots$

with the W_n 's i.i.d. $\mathcal{N}(0, \sigma_w^2)$ random variables and Z_n 's i.i.d. $\mathcal{N}(0, \sigma_z^2)$ random variables, all independent of each other and independent of X_0 . We focus on the case $\alpha = 1$ and $\sigma_w^2 = 0$.

- a) (5 pts) Compute the MMSE estimate of X_n given $\mathbf{Y}^n = [Y_0, \dots, Y_n]^T$ using the result of the previous problem.
- b) (5 pts) Check that the Kalman filter recursion gives the same answer.
- 3. (12 pts) Consider the same dynamical system as in Q. 2:

$$X_0 \sim \mathcal{N}(0, \sigma_0^2)$$

 $X_n = \alpha X_{n-1} + W_{n-1} \qquad n = 1, 2, \dots$
 $Y_n = X_n + Z_n, \qquad n = 0, 1, 2 \dots$

with the W_n 's i.i.d. $\mathcal{N}(0, \sigma_w^2)$ random variables and Z_n 's i.i.d. $\mathcal{N}(0, \sigma_z^2)$ random variables, all independent of each other and independent of X_0 . In this question, we will focus on the case $0 < \alpha < 1$

- a) (6 pts) Let σ_n^2 be the variance of X_n . Show that σ_n^2 increases or decreases monotonically to a limit σ_{∞}^2 as $n \to \infty$ and identify the limit. Hence, show that X_n and Y_n both converge to steady-state distributions as $n \to \infty$ and identify the steady-state distributions. (Hint: find a relationship between $\sigma_n^2 - \sigma_{n-1}^2$ and $\sigma_{n+1}^2 - \sigma_n^2$.)
- b) (6 pts) Fix $\sigma_0^2 = \sigma_z^2 = \sigma_\infty^2 = 1$. Consider 4 possible values for α : $\alpha = 0.1, 0.5, 0.9, 0.99$. For each of these values, simulate the system and plot a realization of $\{X_n\}$ and a realization of $\{Y_n\}$ on the same plot. Explain how the plot qualitatively changes as α varies.
- 4. (18 pts) We apply the Kalman filter to generate estimates \hat{X}_n 's to track the dynamical system in Q. 3. Let v_n^2 be the MMSE error in estimating X_n . We will continue to assume $0 < \alpha < 1$.
 - a) (3 pts) Show that $v_n^2 < \sigma_n^2$. (Hint: no calculations are needed.)
 - b) (3 pts) Show that v_n^2 is monotonic in n. (Hint: use the same technique as in Q. 2(a).)
 - c) (3 pts) Using (a) and (b) or otherwise, show that v_n^2 converges to a limit. Compute the limit v_{∞}^2 .
 - d) (3 pts) Compute the MMSE estimate \tilde{X}_n of X_n based on Y_n only, and compute the resulting MMSE error. Compute the limit e_{∞}^2 of this error as $n \to \infty$.
 - e) (3 pts) Fix $\sigma_0^2 = \sigma_z^2 = \sigma_\infty^2 = 1$. Plot both v_∞^2 and e_∞^2 as a function of α between 0 and 1. For which value of α is the gain from using the entire past history of the observations rather than just the current observation greatest? For what value of α is the gain smallest?
 - f) (3 pts) Fix $\sigma_0^2 = \sigma_z^2 = \sigma_\infty^2 = 1$. Consider 4 possible values for α : $\alpha = 0.1, 0.5, 0.9, 0.99$. For each of these values, simulate the system and plot the resulting trajectories of $\{X_n\}, \{\hat{X}_n\}$ and $\{\tilde{X}_n\}$ and on the same plot. Explain how the plot qualitatively changes as α varies.