EE278 Statistical Signal Processing Stanford, Autumn 2023

Homework 8

Due: Thursday, December 7, 2023, 1:00 pm on Gradescope

Please upload your answers timely to Gradescope. Start a new page for every problem. For the programming/simulation questions you can use any reasonable programming language. Comment your source code and include the code and a brief overall explanation with your answers.

1. ($\mathbf{1 0} \mathbf{~ p t s}$) Consider the n-dimensional multi-sensor estimation problem:

$$
\mathbf{Y}=\mathbf{h} X+\mathbf{W}, \quad X \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right), W \sim \mathcal{N}\left(0, \sigma_{w}^{2} \mathbf{I}\right)
$$

and X and \mathbf{W} are independent.
a) ($\mathbf{3} \mathbf{p t s}$) Derive the MMSE estimator of X given \mathbf{Y} using the general formula you derived for Q. 1 in HW 7 Is the relevant matrix invertible? Comment on the computational effort of directly implementing this estimator for n large.
b) ($\mathbf{3} \mathbf{p t s}$) Derive an estimator of X by first projecting \mathbf{Y} along \mathbf{h} to obtain V and then compute the MMSE estimate of X given V. Comment on the computational effort of implementing this estimator for n large.
c) ($\mathbf{4} \mathbf{~ p t s}$) Show that the estimators in (a) and (b) are identical. (Hint: let \mathbf{g}^{T} be the row vector $K_{X Y} K_{Y}^{-1}$ and multiply it by K_{Y} to solve for \mathbf{g}.)
2. ($\mathbf{1 0} \mathbf{~ p t s}$) Consider the dynamical system discussed in class

$$
\begin{aligned}
X_{0} & \sim \mathcal{N}\left(0, \sigma_{0}^{2}\right) \\
X_{n} & =\alpha X_{n-1}+W_{n-1} \quad n=1,2, \ldots \\
Y_{n} & =X_{n}+Z_{n}, \quad n=0,1,2 \ldots
\end{aligned}
$$

with the W_{n} 's i.i.d. $\mathcal{N}\left(0, \sigma_{w}^{2}\right)$ random variables and Z_{n} 's i.i.d. $\mathcal{N}\left(0, \sigma_{z}^{2}\right)$ random variables, all independent of each other and independent of X_{0}. We focus on the case $\alpha=1$ and $\sigma_{w}^{2}=0$.
a) ($\mathbf{5} \mathbf{~ p t s}$) Compute the MMSE estimate of X_{n} given $\mathbf{Y}^{n}=\left[Y_{0}, \ldots, Y_{n}\right]^{T}$ using the result of the previous problem.
b) ($5 \mathbf{p t s}$) Check that the Kalman filter recursion gives the same answer.
3. ($\mathbf{1 2} \mathbf{~ p t s}$) Consider the same dynamical system as in Q. 2:

$$
\begin{aligned}
X_{0} & \sim \mathcal{N}\left(0, \sigma_{0}^{2}\right) \\
X_{n} & =\alpha X_{n-1}+W_{n-1} \quad n=1,2, \ldots \\
Y_{n} & =X_{n}+Z_{n}, \quad n=0,1,2 \ldots
\end{aligned}
$$

with the W_{n} 's i.i.d. $\mathcal{N}\left(0, \sigma_{w}^{2}\right)$ random variables and Z_{n} 's i.i.d. $\mathcal{N}\left(0, \sigma_{z}^{2}\right)$ random variables, all independent of each other and independent of X_{0}. In this question, we will focus on the case $0<\alpha<1$
a) ($\mathbf{6} \mathbf{~ p t s}$) Let σ_{n}^{2} be the variance of X_{n}. Show that σ_{n}^{2} increases or decreases monotonically to a limit σ_{∞}^{2} as $n \rightarrow \infty$ and identify the limit. Hence, show that X_{n} and Y_{n} both converge to steady-state distributions as $n \rightarrow \infty$ and identify the steady-state distributions. (Hint: find a relationship between $\sigma_{n}^{2}-\sigma_{n-1}^{2}$ and $\sigma_{n+1}^{2}-\sigma_{n}^{2}$.)
b) ($\mathbf{6} \mathbf{~ p t s}$) Fix $\sigma_{0}^{2}=\sigma_{z}^{2}=\sigma_{\infty}^{2}=1$. Consider 4 possible values for α : $\alpha=0.1,0.5,0.9,0.99$. For each of these values, simulate the system and plot a realization of $\left\{X_{n}\right\}$ and a realization of $\left\{Y_{n}\right\}$ on the same plot. Explain how the plot qualitatively changes as α varies.
4. ($\mathbf{1 8} \mathbf{~ p t s}$) We apply the Kalman filter to generate estimates \hat{X}_{n} 's to track the dynamical system in Q. 3. Let v_{n}^{2} be the MMSE error in estimating X_{n}. We will continue to assume $0<\alpha<1$.
a) ($\mathbf{3} \mathbf{~ p t s}$) Show that $v_{n}^{2}<\sigma_{n}^{2}$. (Hint: no calculations are needed.)
b) ($\mathbf{3} \mathbf{p t s}$) Show that v_{n}^{2} is monotonic in n. (Hint: use the same technique as in Q. 2(a).)
c) ($\mathbf{3} \mathbf{~ p t s}$) Using (a) and (b) or otherwise, show that v_{n}^{2} converges to a limit. Compute the limit v_{∞}^{2}.
d) ($\mathbf{3} \mathbf{p t s}$) Compute the MMSE estimate \tilde{X}_{n} of X_{n} based on Y_{n} only, and compute the resulting MMSE error. Compute the limit e_{∞}^{2} of this error as $n \rightarrow \infty$.
e) ($\mathbf{3} \mathbf{~ p t s}$) Fix $\sigma_{0}^{2}=\sigma_{z}^{2}=\sigma_{\infty}^{2}=1$. Plot both v_{∞}^{2} and e_{∞}^{2} as a function of α between 0 and 1 . For which value of α is the gain from using the entire past history of the observations rather than just the current observation greatest? For what value of α is the gain smallest?
f) (3 pts) Fix $\sigma_{0}^{2}=\sigma_{z}^{2}=\sigma_{\infty}^{2}=1$. Consider 4 possible values for α : $\alpha=0.1,0.5,0.9,0.99$. For each of these values, simulate the system and plot the resulting trajectories of $\left\{X_{n}\right\},\left\{\hat{X}_{n}\right\}$ and $\left\{\tilde{X}_{n}\right\}$ and on the same plot. Explain how the plot qualitatively changes as α varies.

